Nuclear Info Sheet

	Alpha Particle Emission	Beta Particle Emission	Gamma Ray Emission
Symbol	${}^{4}_{2}He^{2+}$ or ${}^{4}_{2}lpha^{2+}$	${\stackrel{\scriptstyle 0}{_{-1}}}e$ or ${\stackrel{\scriptscriptstyle 0}{_{-1}}}eta$	° γ
Mass	Heavy	Light	No mass
How it changes the nucleus	 Decreases the mass number by 4 Decreases the atomic number by 2 	 Converts a neutron into a proton Increases the atomic number by 1 	No change to nucleus numbersRelease of energy
Penetration	Low	Medium	High
Protection provided by	Skin	Paper, clothing	Lead, thick concrete
Danger	Low	Medium	High

Half Life Equation

$A_{-} - A_{-} \times 0.5^{n}$	A_E = amount ending
$A_E = A_S \times 0.5$	A _s = amount starting
	n = number of half lives

of Half Lives

t	n = number of half-lives
$n = \frac{1}{2}$	t = time that has passed
h h	h = length of a half life

% still radioactive or % decayed

% _{still r.a.} =	$\frac{A_E}{A_S} \times 100$	A _E = amount ending A _S = amount starting n = number of half lives
% _{still r.a.} =	$0.5^{n} \times 100$	
$\%_{decayed} =$	100 — % _{still r.a.}	

Solving for t, or h

]

Same as this version:

$$\log\left(\frac{A_E}{A_S}\right) = n \times \log(0.5) \qquad \log\left(\frac{A_E}{A_S}\right) = \frac{t}{h} \times \log(0.5)$$

Simply isolate the variable you are trying to solve for

$$t = \frac{h \times \log\left(\frac{A_E}{A_S}\right)}{\log(0.5)} \qquad \qquad h = \frac{t \times \log(0.5)}{\log\left(\frac{A_E}{A_S}\right)}$$